If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+198x+1062=0
a = 9; b = 198; c = +1062;
Δ = b2-4ac
Δ = 1982-4·9·1062
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(198)-18\sqrt{3}}{2*9}=\frac{-198-18\sqrt{3}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(198)+18\sqrt{3}}{2*9}=\frac{-198+18\sqrt{3}}{18} $
| (2x+37)+(90)=3x | | e/5+-14=8 | | ⅘(x+8)=12-1 | | y=0.9(y+8777.78) | | 4-2h=8-h | | 207.95=5(0.08m+26.70+0.30(26.70) | | -21=3u-3 | | (x)×(x+11)=(x+2)×(x+5) | | 11(b+2)=(-10+3b) | | 17h−10h=7 | | 7x+10=3x+120x | | 7-6v=8v+7 | | 66+x+50=180 | | 1-3n=5=-8 | | 1.8r+9=-5.7r–6 | | 5h-4h+-9h+-10h+20h=16 | | 26y+17=24y-18 | | 152-v=225 | | 4z2+42z+20=0 | | 2x*7=17 | | 162/3×n=162/3 | | g2=–52 | | 4y-1+63=180 | | 1/3x+56=1 | | 20=j+15 | | -3.5×n=-28 | | 5h-4h+-9h+10h+20h=16 | | −5−5153 =5(d+4)=5d+20=5d=d | | f2+89=64 | | 20=5x13+6x | | w/7+4.1=13.4 | | 5000+35x=2500+45x |